
Frontend Abstractions Live: 
Vue3 Pokemon App
Web Engineering

INTERACTIVE PROGRAMMING & ANALYSIS LAB (IPA LAB @ TU WIEN)

Jürgen Cito



Pokemon Vue3 App



Pokemon Vue3 App
Component Design

PokemonDetails.vue

PokemonControls.vue
LimitSelector.vue

SearchInput.vue

PokemonListDisplay.vue

Open Questions: 
- Granularity

- When to fetch data

- Managing state

- Binding

- Conditional rendering



Component Design Evolution

Final Component ArchitectureHow it started

Observations: 
- Start off simple with inline elements within components

- Only start abstracting once you “feel the pain 

(“Premature optimization is the root of all evil”) 

- Exception to this rule: If you already come from 

experience and know which abstractions already make 
sense



Container: PokemonList.vue

View

ViewModel

Events

Lifecycle 
Methods

Binding

Computed Values 
Are Reactive

Observations: 
- Keep components as 

stateless as possible (i.e., 
parameterize)


- Minimize global state

- High-level components serve 

as data orchestrators

- When to fetch data is a 

design decision



Control Surface — PokemonControls.vue

Observations/questions: 
- Choice of abstraction level is a 

design decision

- Generality vs. Specificity in 

components 

- Where do we put configuration 

values (e.g., selection values 
10, 20, etc.)?



Simple stateless component — PokemonDetails.vue

Observations/questions: 
- Keep low-level components as 

“stupid” as possible

- This makes them more easily 

comprehensible and testable



Simple component — PokemonListDisplay.vue

Observations/questions: 
- Sometimes, we need to propagate 

information from low-level components to 
other parts of the application 

- Design decision boils down to whether 
we use direct propagation (emit) or global 
state (e.g., Pinia store) 

- Try to avoid global state if you can, 
because it can become messy to reason 
about all the places state change affects 
the application



Global State in Pinia store — stores/pokemonStore.js

Observations/questions: 
- Use for data that you need across the 

application

- Could have also been used to store the 

selected Pokemon if the information is 
needed across multiple components 
across the application



Pokemon Vue3 App

Summary: 
- Avoid premature optimization when designing 

component architectures: Start simple and 
extract components when you “feel the pain"


- Avoid global state if you can (“emit" information/
events from lower-level to higher level 
components)


- However, if orchestration becomes too tedious 
because information is needed across 
components, consider global state (e.g., Pinia 
store)


