
L9: Frontend Abstractions
Web Engineering 
188.951 2VU SS20

Jürgen Cito

https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://ipa-lab.github.io/

• Overview of abstractions that support building declarative and reactive
frontend applications  

• Case study demonstrating these abstractions in Vue.js  

• Live demonstration of refactoring RecipeSearch from plain JS to Vue.js

L9: Frontend Abstractions

• Understand the interplay between data and design/output and how binding
can enable reactive frontends

• Design components that properly encapsulate data, behaviour, design and
output

• Ability to map these concepts and abstractions to their concrete counterparts
in Vue.js

Learning Goals

Concepts and Abstractions in Web Frontend Frameworks

ComponentsRouting 
(Single Page Applications)

Goal: Enable declarative and reactive frontends

Data Binding

One-way Binding 
(Unidirectional)

Two-way Binding 
(Bidirectional)

Establishes declarative
relationship between
components and models

Encapsulation

Data  
Encapsulation

Style  
Encapsulation

Behavior
Encapsulation

Enables modularization
and reusability by
encapsulting various
aspects of the component

Declarative Rendering

Templates
facilitated through

State  
Management

Sometimes requires
management of (global)
shared state across
components

Imperative vs Declarative Frontends

Imperative
▪ Need to create new (sometimes ad-hoc) DOM elements and styles as data is introduced
▪ Requires modifying the DOM as data changes (harder to separate logic from rendering)
▪ Need to change model as the HTML changes (user input) 

Declarative
▪ Output is represented declaratively with templates
▪ Binding declares relationships between model and output
▪ DOM is updated based on model updates “behind the scenes” (instead of imperatively

manipulating the DOM)

MVVM (Model-View-ViewModel)

▪ Data (Model) are represented as
JavaScript objects 

▪ Complete separation of design/output
(View) and logic (ViewModel)  

▪ ViewModel handles relationship between
View and Model
▪ Updates the View when properties

of the Model changes
▪ Encapsulates methods that modify

the Model

Recall: Backend Templating

Templates (sometimes also called views) provide separation between program logic and output.

Template engines replace variables in static template files and control structures (conditionals and loops) with values passed from
the program.

app.set('view	engine',	'pug') 
... 
routes.get('/',	async	(req,	res)	=>	{ 
		res.render('users',	{	title:	'Users',	 
				heading:	'List	of	users’,	users:	getUsers()	});	
}

html	
		head	
				title=	title	
		body	
				h1=	heading	
				div#container	
						-	for	user	in	users	
								div.user=	user.email

PUG Template - users.pug

<html>	
	 <head>	
	 	 <title>Users</title>	
	 </head>	
	 <h1>List	of	users</h1>	
	 <div	id="container">	
	 	 <div	class="user"> 
											jane.doe@tuwien.ac.at 
									</div> 
	 	 <div	class="user"> 
											jack.bauer@tuwien.ac.at 
									</div>	
	 </div>	
</html>	

Output for rendered response

Backend vs Frontend Templating

Backend Templates
▪ The backend receives a request, retrieves/computes data, and generates HTML files
▪ Templates are static markup files that are expanded based on data/values

▪ Template variables are replaced with values
▪ Loops: Iterate over lists of values and generate HTML for each instance
▪ Conditionals: Generate different HTML depending on values

Frontend Templates
▪ Conceptually very similar to backend templates (template variables, loops, conditionals)
▪ Reactive: Values might change based on model changes

▪ Model changes can be triggered by user input
▪ Model (changes) can be retrieved from backend

▪ DOM is updated

Frontend Abstractions: Case Study in Vue.js

Vue.js is a frontend JavaScript framework following the MVVM model to build user
interfaces and single page applications. It also comes with useful tooling to facilitate
creation/maintenance and debugging.

Use as Library  
It can be incrementally adopted by using its core functionality around views as a
library.  

<!--	Embed	the	following	script	to	get	started	-->  
<script	src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

								<div	id="app">	
												Hello,	{{	course	}}	
								</div>	

								<script>	
										var	app	=	new	Vue({	
												el:	'#app',	
												data:	{	
														course:	'Hello	Web	Engineering!'	
												}	
										})													
								</script>	

View  
(with template variables)

ViewModel  
(keeps view and
model in-sync)

Model  
(holds the data)

Reactive: Changing ‘course’ in
the model will change the view

Frontend Abstractions: Case Study in Vue.js

Use as Framework  
It can be also used as a fully-fledged framework
to build single page applications in combination
with tooling.

Components are then organized in .vue Files
and transpiled to JavaScript in a build process.

Use the vue-cli to create boilerplate code/initial
structure of your Vue.js project. 

<template>	
		<div	id="app">	
				Hello,	{{	course	}}	
		</div>	
</template>	
<script>	
		export	default	{	
				name:	'App',	
				data	:	function()	{	
						return	{	
								course:	'Web	Engineering'	
						}	
				},	
		}	
</script>	
<style>	
		#app	{	
				font-family:	Arial;	
				color:	#2c3e50;	
		}	
</style>

App.vue

Beware: Data here is a
function that returns the

model because this is
already a component

Components in Vue.js 
Top down perspective <template>	

				<article>	
						<h2>{{recipe.title}}</h2>	
						...			
				</article>		
</template>	

<script>	
				export	default	{	
								name:	"RecipeItem",	
								props:	{	
												recipe:	{	
																title:	String,	
																thumbnail:	String,	
																url:	String,	
																ingredients:	Array	
												}	
								}	
				}	
</script>	

<style	scoped>	
				.ingredients	li	{	
								text-decoration:	underline;	
								cursor:	pointer;	
				}	
</style>

RecipeItem.vue

Components are reusable building blocks
▪ Template HTML code in View (<template>)

▪ Declares binding to internal model and properties through so
called interpolations | Syntax: {{	data	}}

▪ Supports bounded loops and conditional rendering
▪ Behavior in ViewModel

▪ Input parameters (props) that become part of the internal
model (data)

▪ Derived, computed values (computed)
▪ Registered sub-components to use in the template

(components)
▪ Functions to deal with event handling (methods)
▪ Life-cycle methods (mounted,	created)

▪ Encapsulate (scoped) style that are bound to component

One-Way Binding
<template>	
				<article>	
						<h2>{{recipe.title}}</h2>	
						... 
									
				</article>		
</template>	

<script>	
				export	default	{	
								name:	"RecipeItem",	
								props:	{	
												recipe:	{	
																title:	String,	
																thumbnail:	String,	
																url:	String,	
																ingredients:	Array	
												}	
								},	
 data : function() {
 		return	{	
													standardImage	:	 
														"standard.jpg"	
								}	
						}	
				}	
</script>

RecipeItem.vue

Declares binding to internal model and properties 

▪ Bindings as part of DOM content nodes are declared through
interpolation syntax: {{	data	}} 
(Interpolations are inline expressions, i.e., can be any JavaScript code) 

▪ Bindings as part of attributes are defined using directives 
 
 or  
 (syntactic sugar) 

▪ One-way refers to the direction of data-flow 
Values from the model and properties are bound to the template
variables to create the output when expanded

Two-Way Binding

<template>	
		<section	id="search">	
			<form	…>	
					<label	for="ingredients"> 
									Ingredients 
					</label>	
					<input	v-model="ingredientInput"	 
							type="text"	name="ingredients"	/>	
					<button	type="submit">Search</button>	
			</form>	
		</section>	
		...	
</template>

RecipeSearch.vueDeclares binding to and from internal model (form inputs) 

▪ Model changes are reflected in the view  
(as in one-way binding)

▪ Changes in the view are reflected in the model  
(and consequently to all bindings that have been
established on the model) 

▪ Binding through v-model directive  
<input	v-model=“ingredientInput”> 

▪ Not possible for properties, as direct binding to parent
models would cause maintainability nightmares (use events
or managed shared state instead)

Computed Properties

Derived properties from model 

▪ Inline expressions should be limited to simple operations
▪ Computed properties are declarative values with more complicated

logic that depend on model values
▪ Declared as named functions in the computed object
▪ Can be bound in the template (if you want two-way binding, you

have to establish an object with a get and set function)
▪ Have to be deterministic and synchronous
▪ They are cached and only lazily re-evaluated when their reactive

dependencies change

<template>	
				<article>	
						<h2>{{recipe.title}}</h2>	
						... 
						How	many?	{{	ingredientCount	}}!			
				</article>		
</template>	

<script>	
		export	default	{	
				name:	"RecipeItem",	
				props:	{	
						recipe:	{	
								title:	String,	
								thumbnail:	String,	
								url:	String,	
								ingredients:	Array	
						}	
			},	
 computed : {
 ingredientCount	:	()	=>	{	
								return	this.ingredients.length;	
						}	
				}	
		}	
</script>

RecipeItem.vue

computed	:	{	
		ingredients	:	{	
				get:		function()	{	
						return	this.ingredientInput.split(',');	
				},	
				set:	function(ingredients)	{	
						this.ingredientInput	=	ingredients.join(',');	
				}	
		}	
}

RecipeSearch.vue

Conditional Rendering

Render elements only if expression evaluates to true 

▪ Controlled by directives v-if,	v-else,	v-else-if 

▪ To apply directives to groups of elements either apply
to a parent element or to child <template> element 

▪ v-show directive has similar behaviour 
Difference: Only sets CSS display:	none, while others
actually remove (or never insert) elements in the DOM

<template>	
		<article>	
				<h2>{{recipe.title}}</h2>	
				<div>	
						<div>	
								<img	v-if="recipe.thumbnail"	 
													:src="recipe.thumbnail">	
									
								<template	v-if="recipe.url">	
											→	 
											<a	:href="recipe.url"> 
													Full	Recipe 
												
								</template>	
				</div> 
		</article>	
</template>

RecipeItem.vue

Bounded Loops (List Rendering)

Map elements in an array to HTML elements	
▪ Controlled by directives v-for	and	v-bind:key
▪ Key should be a unique element (ID) that is used

by Vue internally for performance reasons 

▪ Iterator also provides the index if needed 
<li	v-for=“(item,	idx)	in	items”	:key=”idx”>

<template> 
...	
		<h3>Ingredients</h3>	
				<ul	class="ingredients">	
						<li	v-for="ingredient	in	recipe.ingredients"	 
										:key="ingredient.name">	
								{{	ingredient	}}	
							
					
...	
</template>

RecipeItem.vue

Events and Methods

Reacting to DOM events and adding event listeners 

▪ Similar event model to plain JavaScript with callback
mechanism for event handlers

▪ Event listeners can be either Inline expressions or
calling named function declared in methods object

▪ Binding event listener directly on element 
<button	v-on:click=“recipeSearch()”> 
 or  
<button	@click=“alert(‘Hello!’)”> (syntactic sugar)

▪ Event Modifiers (e.g., v-on:submit.prevent) are
directive postfixes that capture common functionality in
events (event.preventDefault() in this example)

RecipeSearch.vue
<template>	
		<div	id="recipeSearch">	
				<section	id="search">	
						<form	role="search"	 
												v-on:submit.prevent="recipeSearch()">	
								<label	for="ingredients">Ingredients</label>	
								<input	v-model="ingredientInput"	 
															type="text"	name="ingredients"	/>	
								<button	type="submit">Search</button>	
						</form>	
				</section>	
				<section	id="results">																						
						<recipe-item	v-for="(recipe,	index)	in	recipes"	 
																			:key="index"	:recipe="recipe"	/>	
				</section>	
		</div>	
</template>	
<script>	
		export	default	{	

	...						
				methods	:	{	
						recipeSearch	:	async	function()	{	
								this.recipes	=	...	
						}			
				} 
				...	
		}	
</script>	

Custom Events

Emitting and handling custom events on components	
▪ Custom events can be emitted with this.$emit(‘ingredientAdd’)
▪ Event Listener has to be registered with exact name (no kebab-casing) 

<recipe-item	 
				v-on:ingredientAdd=“addIngredientToSearch”	/> <template> 

...	
		<h3>Ingredients</h3>	
				<ul	class="ingredients">	
						<li	@click="addIngredient(ingredient)"	 
										v-for="ingredient	in	recipe.ingredients"	 
										:key="ingredient.name">	
								{{	ingredient	}}	
							
					
...	
</template>	
<script>	
... 
		methods	:	{	
				addIngredient	:	function(ingredient)	{	
							this.$emit("ingredientAdd",	ingredient);	
				}	
		} 
...
</script>

RecipeItem.vue

<recipe-item	@ingredientAdd="addIngredientToSearch"	 
					v-for="(recipe,	index)	in	recipes"	:key="index"	 
					:recipe="recipe"	/>	

RecipeSearch.vue

Lifecycle Hooks

Callbacks provided for events in component’s life cycle 	
▪ mounted()	Hook	

▪ Most commonly used hook
▪ Is called after DOM has been fully rendered for component  

(Beware: no guarantee that all child components have been rendered yet)
▪ Ability to access templates, reactive component, and manipulate all

elements in the DOM 

▪ created()	Hook
▪ DOM has not been loaded yet
▪ All options in component are available (data, computed properties,

methods, etc.)
▪ Used to trigger actions like fetching data from backends

Disclaimer: Not necessary to know whole lifecycle depicted in diagram for the test! Source: vuejs.org

http://vuejs.org

State Management

Managing shared global state in a principled manner	
▪ Vuex is a library that introduces abstractions that create a life-cycle of

dealing with reactive global state. This ensures that every state change
is tracked to enable better program understanding and debugging. 

▪ There is no direct access to the state data structures. The only way to
change the state is by using the following techniques
▪ Committing Mutations: Predefined synchronous functions called

mutations are the only way manipulate state. For instance, by
calling store.commit(‘increment’) you can trigger a
predefined increment mutation. Committing a mutations entails
that there is a record of the side effects caused by it (state
changes).

▪ Actions are functions that can commit mutations: Actions can
have asynchronous operations (e.g., to communicate with the
backend). They can be dispatched (i.e., called) in components  
this.$store.dispatch(‘incrementCart’)	

▪ Libraries for reactive state management can be overkill for smaller
applications. Encapsulate state as much as possible and weigh the
trade-offs of using such a complex approach

Routing

Browser-like navigation for Single-Page Applications

▪ Simulate standard navigation by manipulating the browser history
▪ URL fragments allow linking to different logical "pages" while staying on the same browser page

https://www.example.com/#/config/437853

▪ Vue Router library
▪ Same concept as server-side routing
▪ Can pass URL parts as props to components

const routes = [
 { path: '/', redirect: '/search'},
 { path: '/search', component: Search},
 { path: '/cart', component: Cart},
 { path: '/checkout', component: Checkout},
 { path: '/config/:artworkId', component: Config, props: true },
 { path: '*', component: PageNotFound},
]

Endless Variety of Frontend Frameworks

• Different philosophies
• Different corporate backing
• Same concepts and abstractions

