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• Quick recap of HTTP and its relationship to TCP 

• Real-time communication on the web 

• WebSockets concepts 

• Practical instantiation in backends (Node.js) and the browser

L8a: WebSockets



• Describe how clients and web servers interact bidirectionally 

• Understand the underlying mechanism of how a WebSocket  

connection is established 

• Being able to broadcast messages to different clients on a web socket 

• Build a basic WebSockets client and server

Learning Goals
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HTTP Overview

HTTP 
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Protocol)

HTTP Request
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• Builds upon TCP/IP 

• Synchronous request-response protocol 

• Client (web browser) sends request 

• Web server replies with appropriate answer  
(could also be an error) 

• "Stateless" protocol 

• Each request-response pair is independent  

• No permanent connection between server and browser  
(allows for a high number of users per server) 

• Proxies mediate between browser and server  
(caching, filtering, etc.) 

• In HTTP everything is sent and received as clear text 

• Use HTTPS: HTTP over a secured (TLS) connection



HTTP Overview + TCP Connections 
HTTP 1.0 - Multiple TCP connections
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HTTP Overview + TCP Connections 
Starting with HTTP 1.1: Persistent TCP connections
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HTTP 1.0 used the 
Connection: keep-alive 
 header for persistent 
connections, which is 

the default starting 
with HTTP 1.1



WebSockets: Real-time communication (1/2)

WebSockets: Communication protocol to send data bi-directionally on the internet 

Persistent 2-way connection over a single TCP connection 

• Client sends an initial request with an HTTP upgrade header to the server 

• If the web server supports web sockets, it replies with an appropriate upgrade response 

• From that moment, communication runs on the WebSocket protocol 
—> No HTTP headers (it’s a binary protocol) 



WebSockets: Real-time communication (2/2)

Standardized by the IETF in RCF 6455 

Stateful protocol 
• Permanent connection between server and client 
• The server maintains the connection state for each client 

(This leads to increased memory use and potential challenges for scalability) 

Use cases 
• Chat, Live Leaderboards, Online gaming, Notifications, Collaboration, etc.

https://datatracker.ietf.org/doc/html/rfc6455


WebSockets Clients

WebSockets can also be used with clients that are not browsers 

Different clients can interface with WebSocket Servers 
• They need to implement the WebSocket protocol 
• Often built-in APIs in many languages (e.g., Python) 
• Most common client is still web-based in JavaScript 

Requires the server to be able to serve WebSockets 
(e.g., cannot use WebSockets with REST/HTTP APIs)



“Real-time communication” before WebSockets 
Polling & Long Polling

Polling 
• Continuously send requests to the server  

(e.g., using fetch() and setTimin the browser/JS)  

• Most requests will probably return an empty response 

Long Polling 
• Send request to the server, keep connection open until server has new data 
• Not recommended for high-traffic scenarios or actual real-time updates



WebSocket URIs

The protocol specification defines two new Uniform Resource Identifier (URI) schemes 
• ws://  

• wss:// (with encryption using TLS) 

The rest of the URI components  
• One exception: WebSocket URIs do not support fragments 

(i.e., no # fragment after path definitions) 

Example URI 
• wss://www.some.domain/leaderboard



WebSockets Overview
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HTTP Request Headers 
GET /path HTTP/1.1 
Upgrade: websocket 
Connection: Upgrade 
…

HTTP Response Headers 
HTTP1.1 101 Switching Protocols 
Upgrade: websocket 
Connection: Upgrade 
…
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const express = require('express');
const app = express(); 
 

app.get('/hello', function(req, res) {
res.send('Hello World!');

});

const port = 3000;
app.listen(port, function() {

console.log(`Waiting for requests on Port ${port}!`);
});

Recap: Backend Endpoints in Node.js/Express

Request 
Method

Path

HTTP 
Request 
Object

HTTP 
Response 

ObjectDefault status 
code is 200 (OK) Dynamic  

Content/
Response



WebSockets Endpoints  
express-ws library in Node.js/Express (light wrapper around Node ws library)

const express = require('express');
const app = express(); 
const expressWS = require('express-ws’)(app); 
 
 

app.ws('/create',(ws, req) => {
ws.on('message', message => {

console.log('Received message', message);
 
ws.send('Message received' + message);

}

ws.on('close', _ => {
console.log(‘WebSocket closed' + message);

}
});

Websocket Endpoint Path

Receive raw 
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Send raw string 
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Message Event

Socket Close Event



Broadcasting messages to all connected clients

WebSocket handles need to be stored in an established session 

const connections = [] 
app.ws('/create',(ws, req) => { 
 
       connections.push(ws); 

ws.on('message', message => { 
       const actionMessage = JSON.parse(message);
       if(actionMessage.type == "join") { 
           // broadcast to all stored connections

    connections.forEach(
         conn_ws => conn_ws.send('New user joined') 
    );

}
   ….

});



WebSockets in the Browser
const ws = new Websocket('localhost:3000/websocket'); 

ws.onopen = event => { 
       ws.send('String message to the websocket server when joining'); 
}

// Listen for messages 
ws.onmessage = event => { 
       console.log(event.data); 
}

ws.onclose = function(event) {
       console.log('WebSocket connection closed.');
};

document.getElementById('send').addEventListener('click', _ => {
        const message = document.getElementById('message').value;
        ws.send(message);
});

Websocket Endpoint Path
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Send raw string 
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