B Informatics

L8a: WebSockets

Web Engineering
194.161 VU SS24

Jurgen Cito


https://ipa-lab.github.io/

[.8a: WebSockets

« Quick recap of HTTP and its relationship to TCP

e Real-time communication on the web
« WebSockets concepts

« Practical instantiation in backends (Node.js) and the browser

B Informatics



Learning Goals

Describe how clients and web servers interact bidirectionally

Understand the underlying mechanism of how a WebSocket

connection is established

Being able to broadcast messages to different clients on a web socket

Build a basic WebSockets client and server

B Informatics



Recap: HTTP Request/Response

Client

Browser

1
Hn
Other Server

FH
——

Devices

B Informatics

Server
HTTP
(Hyper Text Transfer — —
Protocol) — -—
HTTP Request
g o ®
e HTTP Response
HTTP Request . !
P HTTP Response .

Icons by the Noun Project: Cattaleeya Thongsriphong, Flatart, Graphic Tigers, | Putu Kharismayadi



HTTP Overview

 Builds upon TCP/IP
Synchronous request-response protocol
Client (web browser) sends request

Web server replies with appropriate answer
(could also be an error)

"Stateless" protocol
Each request-response pair is independent

No permanent connection between server and browser
(allows for a high number of users per server)

Proxies mediate between browser and server
(caching, filtering, etc.)

« In HTTP everything is sent and received as clear text
« Use HTTPS: HTTP over a secured (TLS) connection

B Informatics

HTTP

' (Hyper Text Transfer !
! Protocol) !

HTTP Request

HTTP Response

! 1
<____'_____________________________+ __________
i 1

@
)

Proxies




HTTP Overview + TCP Connections
HTTP 1.0 - Multiple TCP connections

Client

Server
TCP Open:
I
HTTP Request
! HTTP Response
TCP Close: T
TCP Open!
HTTP Request
! HTTP Respo_n_s__e_ ____________________
TCP Closei

—
B Informatics



HTTP Overview + TCP Connections
Starting with HTTP 1.1: Persistent TCP connections

Client Server
TCP Open:
I
HTTP Request
R AUl fegpense .
HTTP Request
P AUl fegpense
TCP Closei

—
B Informatics

HTTP 1.0 used the

Connection: keep-alive
header for persistent

connections, which is
the default starting
with HTTP 1.1




WebSockets: Real-time communication (1/2)

WebSockets: Communication protocol to send data bi-directionally on the internet
Persistent 2-way connection over a single TCP connection
- Client sends an initial request with an HTTP upgrade header to the server
- If the web server supports web sockets, it replies with an appropriate upgrade response

- From that moment, communication runs on the WebSocket protocol
—> No HTTP headers (it's a binary protocol)

B Informatics



WebSockets: Real-time communication (2/2)

Standardized by the IETF in RCF 6455

Stateful protocol
« Permanent connection between server and client

- The server maintains the connection state for each client
(This leads to increased memory use and potential challenges for scalability)

Use cases
- Chat, Live Leaderboards, Online gaming, Notifications, Collaboration, etc.

B Informatics


https://datatracker.ietf.org/doc/html/rfc6455

WebSockets Clients

WebSockets can also be used with clients that are not browsers

Different clients can interface with WebSocket Servers
« They need to implement the WebSocket protocol
« Often built-in APIs in many languages (e.g., Python)
- Most common client is still web-based in JavaScript

Requires the server to be able to serve WebSockets
(e.g., cannot use WebSockets with REST/HTTP APls)

B Informatics



“Real-time communication” before WebSockets
Polling & Long Polling

Polling

+ Continuously send requests to the server
(e.g., using fetch() and setTimin the browser/JS)

- Most requests will probably return an empty response

Long Polling
- Send request to the server, keep connection open until server has new data
- Not recommended for high-traffic scenarios or actual real-time updates

B Informatics



WebSocket URIs

The protocol specification defines two new Uniform Resource Identifier (URI) schemes
e ws://

* wss:// (with encryption using TLS)

The rest of the URI components

« One exception: WebSocket URIs do not support fragments
(i.e., no # fragment after path definitions)

Example URI

« wss:/www.some.domain/leaderboard

B Informatics



WebSockets Overview

Client
Server Web Socket Handshake
TCP Open; T S HTTP Headers
i Handshake
| HTTP Request Headers
HTTP1.1 GET UPGRADE | GET /path HTTP/1.1
101 - Switching Protocols gﬁﬁﬁzgiioﬁszzgfzze
PR e HTTP Response Headers

HTTP1.1 101 Switching Protocols

i e | Upgrade: websocket

Connection: Upgrade

TCP Closei
IIIIIII!I

B Informatics



Recap: Backend Endpoints in Node.js/Express

const express = require('express’);
const app = express();

Request /m
Method
app.get('/hello’, function(req, res) { \

HTTP
1 1\ .
res.send('Hello World!"); - Response
Default status }); Object
code is 200 (OK)

Dynamic Request
Object

Content/
Response

const port = 3000;
app.listen(port, function() {
console.log('Waiting for requests on Port ${port}!");

. ;
B Informatics



WebSockets Endpoints

exXpress-ws library in Node.js/ EXPFQSS (light wrapper around Node ws library)

const express = require(‘express’);
const app = express();
const expressWS = require('express-ws’)(app);

Websocket Endpoint Path
1 | -
Message Event app.ws('/create’,(ws, req) =>{
ws.on('message’, message =>{
console.log('Received message', message); « Receive raw
string messages

ws.send('Message received' + message); « Send raw string
} messages

Socket Close Event | '
ws.on('close’, _ =>{

console.log("WebSocket closed' + message);

}
1;

B Informatics



Broadcasting messages to all connected clients

WebSocket handles need to be stored in an established session

const connections =[]
app.ws(/create’,(ws, req) => {

connections.push(ws);
ws.on('message’, message =>{
const actionMessage = JSON.parse(message);

if(actionMessage.type == "join") {

connections.forEach(
conn_ws => conn_ws.send('New user joined’)

B Informatics D;



WebSockets in the Browser

Websocket Endpoint Path

const ws = new Websocket('localhost:3000/websocket’);

Open Event ws.onopen = event => {
ws.send('String message to the websocket server when joining');
messages

Ongoing Message // Listen for messages
Listening Event ws.onmessage = event => {

console.log(event.data); < Receive raw
} string messages

ws.onclose = function(event) {
console.log("WebSocket connection closed.');

Global scope ws
connection can be document.getElementByld('send').addEventListener('click, _ =>{
used in other events

const message = document.getElementByld('message’).value;
ws.send(message);

WebSocket

connection closed
Event

B Informatics



