
L8a: WebSockets
Web Engineering 
194.161 VU SS24

Jürgen Cito

https://ipa-lab.github.io/

• Quick recap of HTTP and its relationship to TCP

• Real-time communication on the web

• WebSockets concepts

• Practical instantiation in backends (Node.js) and the browser

L8a: WebSockets

• Describe how clients and web servers interact bidirectionally

• Understand the underlying mechanism of how a WebSocket

connection is established

• Being able to broadcast messages to different clients on a web socket

• Build a basic WebSockets client and server

Learning Goals

HTTP
(Hyper Text Transfer

Protocol)

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Recap: HTTP Request/Response

Icons by the Noun Project: Cattaleeya Thongsriphong, Flatart, Graphic Tigers, I Putu Kharismayadi

Browser

Other Server

Devices

ServerClient

HTTP Overview

HTTP
(Hyper Text Transfer

Protocol)

HTTP Request

HTTP Response

Proxies

• Builds upon TCP/IP

• Synchronous request-response protocol

• Client (web browser) sends request

• Web server replies with appropriate answer
(could also be an error)

• "Stateless" protocol

• Each request-response pair is independent

• No permanent connection between server and browser
(allows for a high number of users per server)

• Proxies mediate between browser and server
(caching, filtering, etc.)

• In HTTP everything is sent and received as clear text

• Use HTTPS: HTTP over a secured (TLS) connection

HTTP Overview + TCP Connections
HTTP 1.0 - Multiple TCP connections

HTTP Request

HTTP Response

TCP Open

TCP Close

TCP Open

HTTP Request

HTTP Response
TCP Close

ServerClient

HTTP Overview + TCP Connections
Starting with HTTP 1.1: Persistent TCP connections

HTTP Request

HTTP Response

TCP Open

HTTP Request

HTTP Response
TCP Close

ServerClient

HTTP 1.0 used the
Connection: keep-alive
 header for persistent
connections, which is

the default starting
with HTTP 1.1

WebSockets: Real-time communication (1/2)

WebSockets: Communication protocol to send data bi-directionally on the internet

Persistent 2-way connection over a single TCP connection

• Client sends an initial request with an HTTP upgrade header to the server

• If the web server supports web sockets, it replies with an appropriate upgrade response

• From that moment, communication runs on the WebSocket protocol
—> No HTTP headers (it’s a binary protocol)

WebSockets: Real-time communication (2/2)

Standardized by the IETF in RCF 6455

Stateful protocol
• Permanent connection between server and client
• The server maintains the connection state for each client

(This leads to increased memory use and potential challenges for scalability)

Use cases
• Chat, Live Leaderboards, Online gaming, Notifications, Collaboration, etc.

https://datatracker.ietf.org/doc/html/rfc6455

WebSockets Clients

WebSockets can also be used with clients that are not browsers

Different clients can interface with WebSocket Servers
• They need to implement the WebSocket protocol
• Often built-in APIs in many languages (e.g., Python)
• Most common client is still web-based in JavaScript

Requires the server to be able to serve WebSockets
(e.g., cannot use WebSockets with REST/HTTP APIs)

“Real-time communication” before WebSockets
Polling & Long Polling

Polling
• Continuously send requests to the server

(e.g., using fetch() and setTimin the browser/JS)

• Most requests will probably return an empty response

Long Polling
• Send request to the server, keep connection open until server has new data
• Not recommended for high-traffic scenarios or actual real-time updates

WebSocket URIs

The protocol specification defines two new Uniform Resource Identifier (URI) schemes
• ws://

• wss:// (with encryption using TLS)

The rest of the URI components
• One exception: WebSocket URIs do not support fragments

(i.e., no # fragment after path definitions)

Example URI
• wss://www.some.domain/leaderboard

WebSockets Overview

TCP Open

TCP Close

ServerClient

HTTP Request Headers
GET /path HTTP/1.1
Upgrade: websocket
Connection: Upgrade
…

HTTP Response Headers
HTTP1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
…

Web Socket Handshake
HTTP Headers

……

Web Socket
Handshake

HTTP1.1 GET UPGRADE

101 - Switching Protocols

const express = require('express');
const app = express(); 
 

app.get('/hello', function(req, res) {
res.send('Hello World!');

});

const port = 3000;
app.listen(port, function() {

console.log(`Waiting for requests on Port ${port}!`);
});

Recap: Backend Endpoints in Node.js/Express

Request
Method

Path

HTTP
Request
Object

HTTP
Response

ObjectDefault status
code is 200 (OK) Dynamic

Content/
Response

WebSockets Endpoints
express-ws library in Node.js/Express (light wrapper around Node ws library)

const express = require('express');
const app = express(); 
const expressWS = require('express-ws’)(app); 
 
 

app.ws('/create',(ws, req) => {
ws.on('message', message => {

console.log('Received message', message);
 
ws.send('Message received' + message);

}

ws.on('close', _ => {
console.log(‘WebSocket closed' + message);

}
});

Websocket Endpoint Path

Receive raw
string messages

Send raw string
messages

Message Event

Socket Close Event

Broadcasting messages to all connected clients

WebSocket handles need to be stored in an established session

const connections = [] 
app.ws('/create',(ws, req) => { 
 
 connections.push(ws); 

ws.on('message', message => { 
 const actionMessage = JSON.parse(message);
 if(actionMessage.type == "join") { 
 // broadcast to all stored connections

 connections.forEach(
 conn_ws => conn_ws.send('New user joined') 
);

}
 ….

});

WebSockets in the Browser
const ws = new Websocket('localhost:3000/websocket'); 

ws.onopen = event => { 
 ws.send('String message to the websocket server when joining'); 
}

// Listen for messages 
ws.onmessage = event => { 
 console.log(event.data); 
}

ws.onclose = function(event) {
 console.log('WebSocket connection closed.');
};

document.getElementById('send').addEventListener('click', _ => {
 const message = document.getElementById('message').value;
 ws.send(message);
});

Websocket Endpoint Path

Receive raw
string messages

Send raw string
messages

Connection
Open Event

Ongoing Message
Listening Event

Global scope ws
connection can be

used in other events

WebSocket
connection closed

Event

