
L8: Backend Abstractions
Web Engineering 
188.951 2VU SS20

Jürgen Cito

https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://ipa-lab.github.io/

• Overview of abstractions that enable building backends of web services  

• Case study demonstrating these abstractions in Node.js/Express framework  

• Brief overview of general programming abstractions commonly used when
building web service backends

L8: Backend Abstractions

• Get an overview of important concepts in backend web development

• Understand the difference between abstractions and concepts vs. concrete
executions and implementations

• Ability to map these concepts and abstractions to their concrete counterparts
in Node.js and the Express framework

Learning Goals

Recap: Webserver

Web Server: Program running on a computer/server that accepts HTTP
requests over a specific port and answers with HTTP responses

const	http	=	require('http');	

const	requestListener	=	function	(req,	res)	{	
		res.writeHead(200);	
		res.end('Hello,	World!');	
}	

const	server	=	http.createServer(requestListener);	
server.listen(8080);

Basic web server in Node.js

What are the essential
building blocks to enable
us to efficiently build web

service backends?

Backend Abstractions: Case Study in Node/Express

Node.js is a JavaScript runtime environment that runs
Chrome’s V8 engine outside of the browser. It is event-
driven (listening for requests) and provides facilities for
synchronous and asynchronous computation  

NPM (Node Package Manager) manages dependencies
of external JavaScript packages, hosted in a package
repository called npm registry 

Express.js is a web framework for Node.js that  
provides backend abstractions

Concepts and Abstractions for Web Service Backends

Web (HTTP)
Abstractions

General Purpose
Abstractions

(commonly used 
in web backends)

HTTP Request HTTP Response

Routes  
(URL Mapping)

Query 
Parameters Cookies and 

Sessions

Request 
Method

Path Parameters  
(REST)

Message Body  
(Payload)

Content-Negotiation 
(Accept Header)

Content Type 
(MIME Type)

Status 
Code

Dynamic  
Content/Response

Caching 
Behaviour

Encoding 
(Compression)

Static  
Files

Content 
Templating

Middleware

Executes code that can
manipulate request and
response objects

Environment Variables 
(Secret Management)Modularization

Layered Architectures

Model-View-Controller

Design & Architecture 
(Code Organization)

Filesystem

Networking

Database Access

Standard Utilities

const	express	=	require('express');	
const	app	=	express(); 
 

app.get('/hello',	function(req,	res)	{	
	 res.send('Hello	World!');	
});	

const	port	=	3000;	
app.listen(port,	function()	{	
	 console.log(`Waiting	for	requests	on	Port	${port}!`);	
});	

Routes (URL Mapping)
Backend Abstractions

const	express	=	require('express');	
const	app	=	express(); 
 

app.get('/hello',	function(req,	res)	{	
	 res.send('Hello	World!');	
});	

const	port	=	3000;	
app.listen(port,	function()	{	
	 console.log(`Waiting	for	requests	on	Port	${port}!`);	
});	

Routes (URL Mapping)
Backend Abstractions

Request  
Method

Path

HTTP
Request
Object

HTTP
Response

ObjectDefault status  
code is 200 (OK)

Dynamic  
Content/

Response

Request and Response Objects
Backend Abstractions

app.put('/recipes/:id', (req, res) => {

const recipeId = req.params.id;  
const hasImage = req.query.hasImage == 'true';

 const recipe = Recipes.find(recipeId, hasImage);

 if(!recipe) {

return res.sendStatus(404);

 }

 const payload = req.body;

 recipe.update(payload);

 res.send({updateSuccess : recipeId});
});

app.put('/recipes/:id', (req, res) => {

const recipeId = req.params.id;  
const hasImage = req.query.hasImage == 'true';

 const recipe = Recipes.find(recipeId, hasImage);

 if(!recipe) {

return res.sendStatus(404);

 }

 const payload = req.body;

 recipe.update(payload);

 res.send({updateSuccess : recipeId});
});

Path Parameters

Status Code set in response
header and message body
(for response header only

see res.status)
Message Body 

as structured object
(key-value pairs)

JavaScript objects are automatically
serialized as JSON when sending the

response. Could also use res.json(obj)

Query Parameters

Content type inferred - but could also be
set with res.type('application/json')

Request and Response Objects
Backend Abstractions

Middleware
Backend Abstractions

// for parsing application/json  
app.use(express.json());  
// for parsing HTML form data  
// application/x-www-form-urlencoded
app.use(express.urlencoded({ extended: true }));
...

const payload = req.body;  
...

Message Body 
as structured object

(key-value pairs)

Message body only possible because
middleware intercepted the request,
classified and parsed the message, and then
set req.body

Middleware functions can manipulate request and response objects for every request-response cycle.  
They are also provided a next() function that invokes the next middleware function in the chain (order matters)

Cookies and Sessions
Backend Abstractions

Cookies are the consequence of the stateless nature of the HTTP protocol paired with the desire of still establishing some notion
of association between client and server.  
 
Cookies can be set by both client and server as part of HTTP headers and are transmitted with every request/response cycle 

routes.get('/', async (req, res) => {
 let sessionId = req.cookies.sessionId;
 ...  
 if(!sessionId) {
 ...
 res.cookie('sessionId', sessionId);
 }  
 ...
}

Cookies parsed
through middleware
from request header

Cookie written into
response header

Sessions use cookies to
store a unique identifier. The
associated session data is
stored on the server (either
in-memory or in persistent
storage)

Environment Variables & Secret Management
Backend Abstractions

const	db	=	require('db')	
db.connect({	
		host:	process.env.DB_HOST,	
		username:	process.env.DB_USER,	
		password:	process.env.DB_PASS	
})	

const	port	=	process.argv.length	>=	3	?	+process.argv[2]	:	3000;	 Pass as parameter
to process

Environment variables provide a standard way for configurability and provide a strict way of separating configuration from code.  
There are also several other ways to pass configuration to the program (pass parameters, read from configuration file, etc.)

Parameters come
from environment

provided by the
operating system

Templating
Backend Abstractions

Templates (sometimes also called views) provide separation between program logic and output.

Template engines replace variables in static template files and control structures (conditionals and loops) with values passed from
the program.

app.set('view	engine',	'pug') 
... 
routes.get('/',	async	(req,	res)	=>	{ 
		res.render('users',	{	title:	'Users',	 
				heading:	'List	of	users’,	users:	getUsers()	});	
}

html	
		head	
				title=	title	
		body	
				h1=	heading	
				div#container	
						-	for	user	in	users	
								div.user=	user.email

PUG Template - users.pug

<html>	
	 <head>	
	 	 <title>Users</title>	
	 </head>	
	 <h1>List	of	users</h1>	
	 <div	id="container">	
	 	 <div	class="user"> 
											jane.doe@tuwien.ac.at 
									</div> 
	 	 <div	class="user"> 
											jack.bauer@tuwien.ac.at 
									</div>	
	 </div>	
</html>	

Output for rendered responseEnabled by
middleware concept

Networking (HTTP)
Standard Utilities

								const	fetch	=	require('node-fetch');	
								... 
								const	response	=	await	fetch(objectRequestUrl(objectID));	
								if(response.status	!==	200)	{	
												console.log('Could	not	find	object	with	id'	+	objectID);	
												return	false;	
								}	
								const	object	=	await	response.json();	

Almost every programming language has multiple libraries of dealing with network and HTTP requests.
Node also has node-fetch, that has the same functionality and familiar contract as the one in the
browser API.

Persistent Storage (Files)
Standard Utilities

const	fs	=	require('fs');	
const	path	=	require('path');	

const	destinations	=	JSON.parse(fs.readFileSync(path.join(__dirname,	'../res/data.json')));	

Filesystem utilities have
synchronous and

asynchronous API in Node

Beware when deploying to the cloud: Writing to the local filesystem on a server can lead to data loss if the server
is ephemeral (as many platform-as-a-service (PaaS) cloud offerings are). The same goes for “local” databases.
 
Use so-called backing services for attached resources you can access from an API for persistent storage.
https://12factor.net/backing-services

https://12factor.net/backing-services

Modules
Code Organization

Modules in Node.js are not the same as ES6 Modules we have seen for JavaScript in the browser.
But in similar ways, it enables code organization through file-based separation and encapsulation

const met = require('../utils/met.js');

const artworks = met.search('van gogh');

Relative Path

const search = async (term, max=100) => { ... }  
...
module.exports.search = search;

Elements of module.exports	
become part of met object

util/met.jsroutes/artworks.js

Everything in module files not
in module.exports	is

private/implementation detail

Layered Architectures
Common Web Architectures

https://herbertograca.com/2017/08/03/layered-architecture/

Layering in web service backends can be facilitated through existing abstractions

Templates

Routes

Modules

Persistence
Utilities

HTTP Request HTTP Response

Routes  
(URL Mapping)

Query 
Parameters Cookies and 

Sessions

Request 
Method

Path Parameters  
(REST)

Message Body  
(Payload)

Content-Negotiation 
(Accept Header)

Content Type 
(MIME Type)

Status 
Code

Dynamic  
Content/Response

Caching 
Behaviour

Encoding 
(Compression)

Static  
Files

Middleware

Executes code that can
manipulate request and
response objects

Content 
Templating

Environment Variables 
(Secret Management)

Discussion: Limitations of backend abstraction view

• Do libraries and APIs provided in other languages/web frameworks adhere to this
view? What are the differences?

• Is this view future-proof? Why or why not?

