
L7: Web Servers
Web Engineering 
188.951 2VU SS20

Jürgen Cito

https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://ipa-lab.github.io/

• Overview of web servers (hardware and server software) 

• Web servers as part of internet architecture 

• Serving static resources over the filesystem  

• Dynamic resources through server-side scripting and HTTP

L7: Webservers

• Understand the difference between web servers as hardware and software

• Place web servers on the map of broader scale of internet architecture

• Describe static and dynamic resources with respect to web servers and HTTP

• Ability to write a basic web server with JavaScript/Node.js

Learning Goals

HTTP
(Hyper Text Transfer

Protocol)

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Recap: High Level Web Overview
Client

Proxies

Icons by the Noun Project: Cattaleeya Thongsriphong, Flatart, Graphic Tigers, I Putu Kharismayadi

Multiple layers
and proxies

on the internet

www.google.at —> 172.217.23.227

Domain Name
System (DNS):

Translating
hostname to IP

address

Browser

Other Server

Devices

Server

172.217.23.227

- Servers wait for requests
- They serve web resources

HTTP
(Hyper Text Transfer

Protocol)

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Web Server

Icons by the Noun Project: Cattaleeya Thongsriphong, Flatart, Graphic Tigers, I Putu Kharismayadi

Web Server “Web Server” is an ambiguous term: 

1.Hardware: A computer (“server”)
connected to the internet (or any network) 

2.Software: A program running on a
computer/server that accepts HTTP
requests over a specific port and answers
with HTTP responses

Web Server - Hardware

“Data Center” by Sean Ellis https://flic.kr/p/6UDnWP

Hardware: A computer (“server”) connected to the internet (or any network)

Properties of contemporary web servers
▪ Part of large data centres
▪ Latency is geographically dependent, so

web servers are often geographically
distributed (works through, e.g., DNS)

▪ Virtual servers: Physical servers can host
many virtualized (web) servers

 
Can also be your own computer (localhost)

https://flic.kr/p/6UDnWP

Web Server - Geo DNS

https://docs.microsoft.com/en-us/windows-server/networking/dns/deploy/primary-geo-location

Geo-location based Serving through DNS:  
Serving resources from geographically closer data centres

DNS: {Hostname, “Location”} —> IP
 
LDNS = “Local” DNS provided by the
ISP

If not present in LDNS, contacts
global DNS. They determine IP
address to be returned based on
policies regarding “location” features  
(e.g., IP address)

https://docs.microsoft.com/en-us/windows-server/networking/dns/deploy/primary-geo-location

Web Server - Virtual Servers and Containers
One physical server can host multiple virtual servers and/or containers

Virtual Machines
▪ Enables multiple virtual instances of different operating systems to

run in isolation through technology called “hypervisor”
▪ Hypervisors divide physical resources so that virtual servers can

use them and “translates” kernel operations 

Containers
▪ Containers “feel” like virtual machines, but are not virtualized
▪ They provide lightweight process isolation (through cgroups) but

share the Host OS kernel
▪ Beware that containers do not offer the same security boundaries

https://www.redhat.com/en/topics/virtualization

https://www.redhat.com/en/topics/virtualization

Web Server - Cloud
The “cloud” enables provisioning of computational resources over an API

Infrastructure as a service (IaaS)
▪ API-driven infrastructure (web servers) at scale
▪ Provides the ability to write a script that automates

retrieving new (virtual) server capacity
▪ Examples: AWS EC2, Google Compute Engine, …
Platform as a Service (PaaS)
▪ Managed application runtimes (e.g., web servers) that

are built on top of IaaS for scalability
▪ Underlying infrastructure (server) is abstracted away,

configuration can provide directives
▪ Example: Heroku, CloudFoundry, App Engine

▪ Deploy web applications by providing directives on
process to start or providing container

Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The making of
cloud applications: an empirical study on software development for the cloud.
In Foundations of Software Engineering (FSE 2015)

Web Server - Software

Web Server Software: A program running on a computer/server that accepts
HTTP requests over a specific port and answers with HTTP responses

Web Server/HTTP Server
▪ Makes resources accessible over a URL and HTTP/S 

(standard ports 80 and 433)
▪ Starting a web server on local computer makes it accessible over

▪ http://localhost
▪ http://127.0.0.1

▪ Maps path component of URL to
▪ static asset on the file server
▪ dynamically rendered resources

▪ Often incorporates some functionality for  
caching and session handling

https://localhost:3000/members/rackets?year=2020
Path component + query parameters

Web Server - Static Assets

Serving static assets from the file system
▪ Web server automatically wraps static  

files with HTTP Response Headers
▪ Static assets directly map URL path to  

relative part of the file system
▪ They cannot react to other part of the request  

(e.g., query parameter)
▪ MIME-Type is inferred through heuristics (e.g., file endings)
▪ Example of common static files in web servers

▪ HTML, CSS
▪ JavaScript (for use in browser)
▪ Media (Images, Video, Audio, etc.)

Example:
▪ Static assets made available at path  

 /var/www/public_html  
on the server  

▪ If we determine [this is configurable] 
 http://localhost/static/js/search.js  
to be a request for static assets we
could return  
 /var/www/public_html/js/search.js

Web Server - Dynamic Resources

Dynamic Resources
▪ Executing programs in a server side programming language on the server
▪ Dynamic resources can react to complete HTTP request  

(including header information)
▪ Path and Query Parameters
▪ HTTP Method (GET, POST, PUT, …)
▪ Content Negotiation (Accept:	application/json)
▪ …

▪ System output is treated as the complete HTTP response (including headers)
▪ However, many programming languages offer library support for basic HTTP

related functions and provide abstractions (e.g., for dealing with response headers)

Web Server - Examples

Apache/httpd with CGI (Common Gateway Interface)
▪ One of the earliest methods of providing dynamic scripting
▪ Live Example: https://github.com/web-engineering-tuwien/docker-cgi-python 

nginx
▪ Reverse proxy and web server
▪ Online Tutorial: https://www.digitalocean.com/community/tutorials/how-to-configure-

nginx-as-a-web-server-and-reverse-proxy-for-apache-on-one-ubuntu-18-04-server 

Node.js Web Server const	http	=	require('http');	

const	requestListener	=	function	(req,	res)	{	
		res.writeHead(200);	
		res.end('Hello,	World!');	
}	

const	server	=	http.createServer(requestListener);	
server.listen(8080);

https://github.com/web-engineering-tuwien/docker-cgi-python
https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-as-a-web-server-and-reverse-proxy-for-apache-on-one-ubuntu-18-04-server
https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-as-a-web-server-and-reverse-proxy-for-apache-on-one-ubuntu-18-04-server
https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-as-a-web-server-and-reverse-proxy-for-apache-on-one-ubuntu-18-04-server

