
L2: Browser/HTML/Accessibility
Web Engineering 
188.951 2VU SS20

Jürgen Cito

https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://ipa-lab.github.io/

• Browser Overview

• Semantic HTML 

• Accessibility for the Web 
Web Accessibility Initiative (WAI)

L2: Browser/HTML/Accessibility

• Understand the browser as a model for frontends and its limitations

• Create basic documents for the web with semantically correct HTML

• Explain how forms in HTML documents translate to HTTP requests

• Understand the relation of accessibility and semantic markup structure

Learning Goals

Powerful Declarative Language  
for defining user interfaces

• Rapid prototyping for interfaces
• Ability to include various forms of media 

(images, video, audio)
• Cross-platform frontends  

(across devices, operating systems)
• Adapts to different window sizes

Shared understanding of interaction models
• URLs as standard entry-point for resources
• Links to internal and external resources
• Back/forward/refresh buttons ubiquitously

understood
Underlying complex processes abstracted 
(rendering, networking, threading, etc.)

Browser: A model for frontend applications

Interface possibilities limited (compared
to native interfaces)

• Document-centric structure may limit
(or make it harder) to implement  
certain interaction models

• Limited communication capabilities 
 

• Limited access to user machine 
 
 

• Mostly pull communication

Limited set of protocols (HTTP(S))

Restricted local access for security and
privacy reasons (cookies, local storage)

Exception: WebSockets 
(nonetheless, most web

communication is pull-based)

HTML/CSS

Powerful abstractions Limitations

Browser Internals - Overview

Source: https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Standard UI elements in
the browser (address bar,

menus, back button, etc.)

Translates between UI
and rendering engine

Responsible for visually
displaying requested

resource in main window

Handles incoming and
outgoing network
requests (HTTP)

Parses and executes JavaScript
in the browser process

Renders basic widgets (forms) and
translates to underlying operating

system UI rendering methods

Local persistent data
(cookies, local
storage, etc.)

Browser Internals - Rendering Engine

<!DOCTYPE	html>	
<html>
		<head>
				<meta	charset="utf-8"/>
				….	
				<title>Web	Engineering</title>
		</head>
		<body>
				<h1>First	order	header</h1>
				<p>Paragraph	content</p> 
				….	….		…	
		</body>
</html>

HTML Document Visual Representation  
(including interaction capabilities)

(1) Construct the
Document Object Model
(DOM) from parsing the 

 HTML document

(2) Construct Render Tree
from styling information

(CSS) together with visual
instructions in HTML

(3) The Layout Process is
a recursive process that
attaches coordinates to

each node

(3) In Painting each node
from the render tree  
will be painted using  

the UI backend

Gradual process:
One process will not wait for the
previous one to finish completely, but
rather the rendering engine will try to
display contents as soon as possible

Continuous Resource Fetching:
The document can contain links to
external resources (stylesheets, images,
scripts, etc.) that are continuously
fetched in this gradual process

Source: https://dbaron.org/talks/2008-11-12-faster-html-and-css/slide-6.xhtml

(Semantic) HTML

The structure of web documents and applications

HTML Overview
• Hyper Text Markup Language
• Standardized by the W3C
• Describes structure and content of a document
• Human and non-human users

• Browser parses the content and presents it to the end user
• Crawler indexes the parsed content (machine-readability)

<tagname attribute="value">content</tagname>

start tag end tag

element

element
name

attribute

HTML5 Overview
• Goal

• Web Documents àWeb Applications
• Updating the HTML specification
• Consider low-powered devices (e.g., smartphones)
• Reduce the need for external plug-ins (e.g., Flash)
• More built-in markup to replace scripting

• Features
• One language
• Form validation
• Web storage
• Offline support
• Multimedia support
• …

HTML Structure

Basic Structure
Document type
Document element

Head with meta data

Body with content

<!DOCTYPE	html>	
<html>
		<head>
				<meta	charset="utf-8"/>
				<meta	name="author"	content="WE"/>	
				<title>Title</title>
		</head>
		<body>
				<h1>First	order	header</h1>
				<p>Paragraph	content</p>
		</body>
</html>

HTML Structure - Document Type
XML declaration

• Only necessary for XHTML
• Version of XML being used

Document Type
• Distinguishes versions
• “Quirks mode” 

Layout mimics non-standard behavior 
(i.e., to support web sites built before 
widespread adoption of web standards)

Document element
• Single root element
• For XHTML add namespace

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.1//EN"
			http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<?xml	version="1.0"	encoding="UTF-8"?>

<html	xmlns="http://www.w3.org/1999/xhtml"
						xml:lang="de"	lang="de">
...	
</html>

<!DOCTYPE	html>The only important
one for this course

HTML Structure - Global Structure
Head with meta data

• Title
• Data from meta element

• Author, Keywords, Date, …
• Linking to other resources

• CSS, JavaScript, … 

Body containing content 

Global attributes (excerpt)
• id: Unique identifier
• class: Assigned class for CSS  

title: Description of an element
• style: Element specific layout information
• data-*: Invisible attached data 

(Custom data accessible through JavaScript)

<head>	
				<meta	name="author"	content="JC"/>	
				<title>Title</title>
</head>

<link	rel="stylesheet"	type="text/css"	
						href="/path/to/my/style.css">

<div	 
		id=“someID"	
		class=“someClass"				 
		title="Text	displayed	as	tooltip"							 
		lang="en" 
		data-loaded="false" 
	 
		style=“display:block;“>
				Content
</div>

HTML Structure - Element Semantics
Syntax

Semantics
• Not given by standard visual representation!

• <h1> is a first order header != the thickest printed text
• prints text bold != emphasizes the text
• <table> represents tabular data != layout mechanism

Why use syntactically and semantically correct elements?
• Browser compatibility, accessibility (later)
• Easier processing for tools, e.g., transformations, indexing for search engines
• More efficient browsing (no interpretation of wrong HTML necessary)

Shift towards better use of semantics enables
• Ability for better interpretation for accessibility
• Easier code understanding and maintainability

<tagname	attribute="value">content</tagname>

<div	id="header">...</div>

<header>...</header>

HTML Structure - Content Structure
<header>	 
defines header of document or section	
<nav>	 
defines navigation region of page or section	
<main>	 
main content of the page	
<section>	 
thematic grouping of content	
<h1-h6>	 
Heading from most to least important 
Reflects structural depth, e.g. in sections.
Exactly one <h1> per page
<article> 
specifies complete, self-contained content	
<aside> 
defines content aside from main content	
<footer> 
defines footer of document or section

Many of these elements can be nested and it's not
always straightforward which element should be used!

HTML - Block vs. Inline

Block elements take up full width and  
force a line break before and after  
<h1>, <p>, <div>, <section>,…  
 

Inline elements take up as much width as necessary 
, <a>, , ,…

HTML - Generic Elements

<div>  
Generic block element

  
Generic inline element

Use these when no other element with
more appropriate semantics is left

HTML - Selected Grouping Elements
• Paragraphs
• Contact Information
• Pre-formatted content

• Figure (self-contained flow
• content) with caption
• Blockquote
• Cite: Citation 

• Lists with list Elements
• Unordered Lists (ul)
• Ordered Lists (ol)

<p>Lorem	ipsum	dolorem	sit	amet…</p>	

Contact:	<address>Name:	Jane	Doe</address>	

<pre>public static void main(){}</pre>	

<figure>	
		<blockquote>Any	idiot	can	put	up	a	website.</blockquote>
		<footer> 
					<figcaption>Some	quote</figcaption>
					<cite>Patricia	Briggs</cite> 
		</footer>	
</figure>

		Some	element
		Another	element	

		First	element
		Second	element	

HTML - Links and Anchors

Links and Anchors 

• Links refer to (other) documents or  
elements within (other) documents 

• Anchors define bookmarks within a 
document, which can be used by links

HTML	Standard	
Registration	
Timetable/Lectures

Link	text	
Link	text

HTML - Basic Forms
Buttons
Checkboxes
Radio Buttons
Menus

Text Input
Text Field
Text Area

File Select
Hidden Controls

Only for storing values between different sites
Not for sensitive data!

<input	type="submit"	value="Submit"	/>	

<input	type="checkbox"	name="…"	value="…"	/>	

<input	type="radio"	name="…"	value="…"	/>	

<select>	
		<option	value="EWA">EWA</option>	
		…
</select>	

<input	type="text"	/>		<input	type="password"	/>	
<textarea	type="text"	rows="2"	cols="50">	
</textarea>	

<input	type="file"	/>	

<input	type="hidden"	name="…"	value="…"		/>

HTML - Grouping Form Elements

<fieldset>	
		<legend>Choose	your	favourite	course</legend>	

		<p> 
				<input	type="radio"	id="we"	name="course">	
						<label	for="we">Web	Engineering</label> 
		</p> 
 
		<p> 
				<input	type="radio"	id="ssd"	name="course">	
						<label	for=“ssd”>Semi-structured	Data</label> 
		</p> 
</fieldset>

Fieldset 
Grouping for part of an HTML form
Legend 
Caption for fieldset
Label 
Caption for elements in an HTML form

HTML5 - Newer Form Elements
New form elements

• <datalist>	defines a list of pre-defined options	
• <keygen>	specifies a key-pair generator	
• <output>	represents the result of a calculation	

New form attributes
• autocomplete: use previous values	
• novalidate: disable form validation	

New input types
• color, date, number, time, url, …

New input attributes (excerpt)
• pattern: regexp for allowed values	
• required: field must not be empty 	
• placeholder: suggest value for field

<input	list="browsers"	/>	
<datalist	id="browsers">
			<option	value="IE"	/>	
			<option	value="Firefox"	/>	
			<option	value="Chrome"	/>	
</datalist>

<input	type="number"	min="1"	max="5"	/>

<input	type="text"	 
							placeholder="First	name"	/>

What happens when I send a form?

<!DOCTYPE	html>	
<html>	
		<head>	
				<title>A	HTML5	Document</title>	
		</head>	
		<body>	
				<p>This	is	a	sample	HTML	5	document.</p>	
				<form	action=“/processForm”	method="post">	
						<p>	
								<label	for="userName">Your	name:</label>	
								<input	type="text"	id="userName"	name="userName"	/>	
						</p>	
						<p><input	type="submit"	value="Submit	the	form"	name="action"	/></p>	
				</form>	
		</body>	
</html>

HTML forms only allow
GET and POST requests

What happens when I send a form?

Program

Jürgen

Hi Jürgen,

thanks for using our sample  
web application…

submit.html

Web
Server

…
userName=	
“Jürgen“

response.html

response.html

1
2

3

5
6

7

HTTP
response.html

Client Server

…
userName=	
“Jürgen“

4
POST Request

Message Body

Accessibility

Designing and building web experiences for universal access

Universal Accessibility
Who are we designing for?
Everyone (as much as possible)
• People with physical disabilities
• People with mental disabilities
• People with (temporary) injuries
• Non-native speakers  

(internationalization/localization)

Who is our references point?
Ourselves
• It’s hard to design and build for  

other people (intrinsically)

Common Disabilities
Vision Problems
• Blindness, low-vision, color-blindness, etc.
Hearing Problems
• Deafness, high-frequency loss, etc.
Movement Problems
• Paraplegic, wrist problems, broken arms/hands, etc.
Reading Difficulty
• Dyslexia, illiteracy, non-native speakers

Standardized Guidelines can help design and  
build universally accessible web experiences

Web Accessibility Guidelines
Components
Authoring Tool Accessibility Guidelines (ATAG), 1.0

Guidelines for Web authoring tools (software that creates web sites)

User Agent Accessibility Guidelines (UAAG), 1.0
Guidelines for user agents (web browsers, media players, etc.)

Web Content Accessibility Guidelines (WCAG), 2.0
Guidelines for information in a web site (text images, forms, etc.)

Accessible Rich Internet Applications (WAI-ARIA)
How to develop dynamic web content and web applications

Independent User Interface (Indie UI)
How user actions are communicated to web applications

Evaluation and Report Language (EARL)
A machine-readable language for expressing test results

Focus in this lecture on WCAG

Web Accessibility Guidelines - WCAG
Web Content Accessibility Guidelines
▪ Web Content Accessibility Guidelines 1.0 (WCAG 1.0)

▪ W3C Recommendation since 05 May 1999
▪ 14 Guidelines

▪ Web Content Accessibility Guidelines 2.0 (WCAG 2.0)
▪ W3C Recommendation since 11 December 2008
▪ Four Principles of Accessibility
▪ 12 Guidelines beneath these principles
▪ Three Conformance Levels

▪ Conformance Level A (Priority 1 checkpoints)
▪ Conformance Level Double-A (Priority 1 and 2 checkpoints)
▪ Conformance Level Triple-A (Priority 1, 2, and 3 checkpoints)

▪ Main documents
▪ W3C standard, http://www.w3.org/TR/WCAG20/
▪ How to Meet WCAG 2.0, http://www.w3.org/WAI/WCAG20/quickref/
▪ Understanding, http://www.w3.org/TR/UNDERSTANDING-WCAG20/
▪ Techniques, http://www.w3.org/TR/WCAG20-TECHS/

Reference
material

Accessibility Checker
▪ FAE: http://fae20.cita.illinois.edu
▪ AChecker: http://achecker.ca/checker/
▪ WAVE: http://wave.webaim.org/

Screen reader
▪ Orca (for Linux): http://live.gnome.org/Orca
▪ VoiceOver (for iOS, OSX): http://www.apple.com/

accessibility/voiceover/
▪ Jaws (for Windows only): http://

www.freedomsci.de/serv01.htm
▪ Webformator (for Windows only): http://

www.webformator.com/
▪ Fangs (emulates a screen reader in Firefox): 

http://www.standards-schmandards.com/projects/
fangs/

http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/TR/UNDERSTANDING-WCAG20/
http://www.w3.org/TR/WCAG20-TECHS/
http://fae20.cita.illinois.edu/
http://achecker.ca/checker/
http://achecker.ca/checker/
http://wave.webaim.org/
http://live.gnome.org/Orca
http://www.apple.com/accessibility/voiceover/
http://www.apple.com/accessibility/voiceover/
http://www.apple.com/accessibility/voiceover/
http://www.freedomsci.de/serv01.htm
http://www.freedomsci.de/serv01.htm
http://www.freedomsci.de/serv01.htm
http://www.webformator.com/
http://www.webformator.com/
http://www.webformator.com/
http://www.webformator.com/
http://www.standards-schmandards.com/projects/fangs/
http://www.standards-schmandards.com/projects/fangs/

Web Accessibility - Principles 
Perceivable

Information and user interface components must be presentable to users in ways
they can perceive

▪ Text Alternatives
▪ Provide text alternatives for any non-text content so that it can be changed into other

forms people need, such as large print, braille, speech, symbols or simpler language

▪ Time-Based Media
▪ Provide alternatives for time-based media

▪ Adaptable
▪ Create content that can be presented in different ways  

(for example simpler layout) without losing information or structure

▪ Distinguishable
▪ Make it easier for users to see and hear content including separating 

foreground from background

alt Attribute
<img alt=“Man

walking dog down
the street” …>

Is there any content on the site that
people with any (audio-visual)

impairment could not perceive?

Don’t rely only on color.
Use proper semantics  

(to emphasize)

Web Accessibility - Principles 
Operable

Can all functions be performed with a
keyboard? Is completing tasks easy?

 
User interface components and navigation must be operable 

▪ Keyboard Accessible

▪ Make all functionality available from a keyboard

▪ Enough Time
▪ Provide users with disabilities enough time to read and use content

▪ Seizures
▪ Do not design content in a way that is known to cause seizures

▪ Navigable
▪ Provide ways to help users with disabilities navigate, 

find content and determine where they are

Use Proxies (Lynx,
Fangs) to determine
issues with keyboard/

navigation accessibility

Ensure user control of time-
sensitive content changes

(Ensure that moving, blinking,
scrolling objects may be

stopped by the user)

Web Accessibility - Principles 
Understandable

Is text clearly written? Do my
navigation and forms flow intuitively?

Information and the operation of user interface must be understandable

▪ Readable
▪ Make text content readable and understandable

▪ Predictable
▪ Make web documents and apps appear and operate in predictable ways

▪ Input Assistance
▪ Help users avoid and correct mistakes

Web Accessibility - Principles 
Robust

Do I maximize the use of semantic
markup to support different technologies?
Is my app backwards-compatible (or has

some form of graceful degradation)?

Content must be robust enough that it can be interpreted
reliably by a wide variety of user agents, including assistive
technologies

▪ Compatible
▪ Maximize compatibility with current and future user agents,

including assistive technologies

Test on different devices,
operating sytems, and  
modes of operations

Design for performance
- Not everyone has 3G/LTE 

- Not everyone has powerful devices

Web Accessibility - Examples
▪ Using CSS to hide (a portion of the link) text (C7)

▪ Supplementing link text with the title attribute (H33)

▪ Using alt attributes on img elements (H37)

▪ Using semantic markup to mark emphasized or special text (H49)

<a href="http://example.com/WORLD/africa/kenya.elephants.ap/index.html"
 title="Read more about failed elephant evacuation">
 Evacuation Crumbles Under Jumbo load

.accessibility	{	position:	absolute;	
																	left:	-10000px;	/*	off	screen	*/	
																	width:	1px;	
																	height:	1px;	
																	overflow:	hidden;	}

What she Evacuation meant to say was...
This is an excerpt from <cite>The story of my life</cite>: ...

Web Accessibility - Bad Practice Form Scenario

...
<form	action="/login">	
		<p>	
				Login	form
						<table>	
								<td>User	name
	
												Password
								<td>	
								<td><input	name="1">
	
												<input	name="2">	
												<input	type="submit"	value="submit">	
						</table>	
						not	registered?	click	here
</form>	
...

Web Accessibility - Bad Practice Form Scenario
Screen Reader Linearization

Color blindness and/or myopia

What does here mean?
When jumping through links 
(tab key) the link title is just „here“.

No semantics of „Login form“
Just visually bigger, but no real heading

First indication: Is not valid HTML

Imagine 15 fields!
Just visual (no logical) binding of label and field
à Where do I fill in what?

