-

Client-Server . ‘

Communication with GraphQL

Web Engineering, Guest lecture, 188.951 2VU SS20

Erik Wittern | erikwittern@gmail.com | @erikwittern | wittern.net
May 18th 2020

Learning goals

« What actually is GraphQL, and how came it about?

* How does GraphQL work?
* What are some benefits vs. challenges for GraphQL?

Background & Overview

In 2012, Facebook faced a problem

An increasing number of ever-
evolving (mobile, native) clients...

...led to the creation of (and hence
maintenance burden for) more and
more, increasingly complex (ad hoc)
APl endpoints.

Mai 18" 2020 Source: https://reactjs.org/blog/2015/05/01/graphgl-introduction.html

https://reactjs.org/blog/2015/05/01/graphql-introduction.html

GraphQL shifts control over what data is returned (or
mutated) to clients

Providers define their data Clients send queries Servers respond with data
types at design time at runtime at runtime
{

type { query { "data" : {

name: me { "me" 1 {

age: name "name" :
} } ;

} I3

type { '

me:

Demo

https://www.github.com/ErikWittern/graphgl-demo

Mai 18th 2020

https://www.github.com/ErikWittern/graphql-demo

So, what is GraphQL?

A query language for networked APIs...
 ...and a runtime for servers to fulfill queries

Specification + reference implementation in JavaScript

« Clients send type-checked queries, servers respond with requested data:

Request: POST {"query": ..}

GraphiQL > Prettify History \

1 { =T

2~ users (limit: 3) { ~ "data": { . _

3 name - "users": [POST {"introspection": ..}

4 employerCompany { ~ {

5 name "name": "Arlene L McMahon", \
6 } "employerCompany": {

7 } "name": "Binary \

8 } Solutions"

3 {"schema": ..}

b
v {
] SRRSO | | M2 1712 e D Naa

GraphQL client (here: GraphiQL)

Response: {"data": ..}
Mai 18t 2020

History of GraphQL

« 2012 - Originally developed and used by Facebook
* ...to serve increasing numbers of diverse clients

« Sep 2015 — Open sourcing
« Sep 2016 — Move from “technical preview” to “working draft”

* Nov 2018 — Announcement of GraphQL Foundation (part of The Linux
Foundation)
@ GraphQL

Foundation

Language & Runtime

Anatomy of a GraphQL query (selected concepts)

Operation type QOperation name Variable definition
A A

'query‘%etchGrathLData\(Edetails: Boolean!) {

Field selection 2 Arguments
| A

lrepositorykbwner: "graphql™, name: "graphql—jsJ) {

Fragment spread Directive
A |

[

...repoDetails\éinclude(if: $detailsf
issueOrPullRequest (number: 10) {

Type condition
A

[\
_ ...0n Issue {
Inline

- Selection set

fragment , updatedAt
}
}
)
fragment repoDetails on Repository {
Fragment |~ repoName: name | Alias
definition , description

Mai 18th 2020 - More details at: http://spec.graphal.org/draft/#sec-Document-Syntax

10

http://spec.graphql.org/draft/

Defining schemas with the schema definition language (SDL)

Schema
definition

Object type
definition

Directive
definition

Enum type
definition

Mai 18th 2020

[schema {

. Root operation
. uery. uer
1 g y: @ y } type definition

[type Query {

Name Argument definition Type
] | : [! \ !—‘—\
users(limit: Int!): [User]} Field definition

}

- Name Directive locations
A |

{directive @upperCase on FIELD_DEFINITION

enum Status {
ACTIVE
INACTIVE

}

Directive

type User { \

[|

name: String @upperCase

status: Status

}

More details at: http://spec.graphagl.org/draft/#sec-Document-Syntax

11

http://spec.graphql.org/draft/

Query exeuction on a (HTTP) server

HTTP server m
GraphQL execution engine
.]
Resolver functions g . =@
(contained in schema object) O
GraphQL middleware
! A
0 — e (7]
© (0}
9 @ qz; = < o @ -
1] " O O -Iq—"2 e - (7p] bt n o
{"query": .. } d = 2 ol S O T c Q
> = — O c - O — _, 2353 5 50 —» AN .
O © IR © 2 8 ‘;‘ g 3] -
C S Ry >3 5 I @ ke
%< Q o) o) D >
LLi = O «» m
{"errors": .. } ‘ ‘ ‘ ‘
{"data": .., }

Mai 18th 2020 12

Advanced Query Concepts

Introspection

query IntrospectionQuery {

* Introspection is a mechanism for clients to learn (at schema {
runtime) about the data types and operations a queryType { name }
GraphQL server offers mutationType { name }
subscriptionType { name }
types {
. : : , ... FUullType
» An introspection query is a plain-old GraphQL 1
query... directives {
: . name
* ...that happens to select meta-fields provided by locations
introspection types args {
... InputValue
}
« Client-tools like GraphiQL rely on introspection for: 1 ;
« Showing documentation about types & operations 1

» Client-side query validation
+ Auto-completion when typing queries
+ Etc.

Mai 18th 2020

Mai 18th 2020

Demo

https://developer.github.com/v4/explorer/

15

https://developer.github.com/v4/explorer/

Pagination with slicing arguments and offset

query fetchPage2 {

Pagination aims to return different parts

user {
(or slices) of long lists of data name
friends(last: 5, offset: 5) {
« Slicing arguments (often named max, yyy e
Llimit, first, or last) define length of
slice to return page1 page?2
° Of.ten COmbIned Wlth an uoffse.tu 17116]115]| 14 ‘I?3l12 11 1l0 918|7|6]|5]|4]|3
offset slic
* One problem: this approach may return new returned twice
items twice when list updates page 1 page 2

20119118 |17|16[15|14|18|12|11|10(9 | 8 | 7 | 6

| J

offset slice

Mai 18th 2020

Pagination with Cursor Connections

query fetchPage2 {

« Cursor Connections rely on... user {
. . . name
» Fields using slicing arguments... friends(last: 5, after: "opaqueCursor") {
» ...return a Connection with fields pa%:i“iitéage :
pagelnfo and edges... }
. edges { e
« ...where each Edge has fields cursor cursor
. : node {
and node, containing the actual object. ame
}
PPt}

* Robust to list-updates outside the slice

during paginating new page 1 page 2
 Think of a common Facebook’s use-case: 20|19|18|17|16|15|14|13|12|11|10]| 9| 8| 7|6 |5 |4 | ---
news feed, where mostly items are added cursor slice

Mai 18th 2020 More details about cursor connections at: https://relay.dev/graphgl/connections.htm (also source of the example above)

https://relay.dev/graphql/connections.htm

Pros & Cons

GraphQL benefits for clients

Mai 18t 2020

GraphiQL \;/ Prettify = | History

1v{

2 repository(

3 owner: "ib

4 name: "ope Static typing (auto-
5+) { complete, validation)
6 createdAt

7
8 Identifies the date and time when the object was
9 created.

10

11~ issues(first: 10) {

12~ nodes {

13 bodyText

14 author {

15 login Fewer

16 } roundtrips
17 }

18 }

19 ...Descriptions

20 }

21 '}

22

23~ fragment Descriptions on Repository {
24 description

25 descriptionHTML

26 shortDescriptionHTML

277 b

QUERY VARIABLES

v

4

Predictable

{
"data": {
"repository": {
"createdAt": "2018-09-05T18:52:16Z",
"issues": {
"nodes": [
{

"bodyText": "As we increase the
functionality of this library, we should make
sure to test our work. I often use tape
(https://github.com/substack/tape) for testing
(see for example
https://github.ibm.com/apiharmony/apih-
be/blob/master/test/test_api.js), but have not
tried it for GraphQL.\nThere are some articles
on GraphQL testing, using for example Jest
(https://medium.com/entria/testing-a-graphql-
server-using-jest-4e00d0e4980e) or
Mocha/Chai/Sinon
(https://medium.com/@FdMstri/testing-a-graphql-
server-13512408c2fb). From a first look, I like
tape better, but I am open for
discussion.\n@Alan-Chal What do you think?",

"author": {

"login": "ErikWittern"

responses

Iy No over-

fetching

< Query Repository

Q

A repository contains the content for a project.

IMPLEMENTS

Node

ProjectOwner
RegistryPackageOwner
Subscribable

Starrable
UniformResourcel.ocatable

Repositorylnfo

FIELDS

assignableUsers(
after: String
before: String
first: Int
last: Int

19

GraphQL benefits for providers

« Happy APl consumers (!)

« Simplified maintenance

» Serve clients with diverse, changing
requirements with a single endpoint

« GraphQL API self-documents types & operations

* Improved performance and operations

» Avoid loading / caching / exposing unneeded
data

» Understand data-use on a per-field level

« Compose heterogenous backend resources

Mai 18th 2020

20

Challenge: HTTP caching of GraphQL requests

Application

* Problems with typical HTTP proxy /
gateway caches include:

» Often, non-safe & non-idempotent POST is
used to send (large) queries cache

« Some queried fields may become stale
sooner than others, making it hard to
define Cache-Control /Last-

modified headers , provider
. . iont-side network
 Alternatives include:
» Cache persisted queries in proxy or gateway
 Client-side caching based on ID field v consumer

» Application caches in the data-layer
(“DatalLoaders”) or resolver functions

Mai 18th 2020 More details at: https://www.apollographgl.com/blog/graphgl-caching-the-elephant-in-the-room-11a3df0c23ad

https://www.apollographql.com/blog/graphql-caching-the-elephant-in-the-room-11a3df0c23ad

Challenge: rate-limiting & threat prevention

» Servers may need to deal with query fetchAllTheData {
. . : users (limit: 1000) {
excessive queries sent by clients orders (first: 1000) {
+ Rate-limiting - and not “x requests per paﬂ:%zetalls {
time-interval” 1
» Pricing requests) ¥
 Blocking (inadvertently) threatening 1
requests

= ~ |
+ Options include: 1000s of REST requests!

« Timeouts against threatening requests
« Dynamic analysis
« Static analysis

* Query “depth” or “nesting”

* Query “cost” or “complexity”

Mai 18th 2020 More details at: https://www.ibm.com/blogs/research/2019/02/graphaql-api-management/

22

https://www.ibm.com/blogs/research/2019/02/graphql-api-management/

Wrap-up

Summary

« Remember: GraphQL was created to address specific problems with other
APl models

« Using GraphQL may or may not be beneficial
 Who are API clients? Internal, external, both?
 How is an APl used?
* How will the API (likely) evolve?
« - consider the trade-offs (as with most technology choices)

* There is much more to learn about GraphQL !!
» Mutation and subscription operations
« (Automatic) mappings to REST APIs or databases
« Schema stitching and federation
« And more!

Additional resources

Web resources
» Official GraphQL website, incl. documentation (https://graphgl.org/)
» GraphQL specification (http://spec.graphgl.org/)

* Principled GraphQL (https://principledgraphgl.com/)

Libraries
» GraphQL-js reference implementation (https://github.com/graphgl/graphagl-js)
» OpenAPI-to-GraphQL (https://github.com/IBM/openapi-to-graphal)
» Apollo Client (https://www.apollographgl.com/client/)

* ...and many many more!!!

Videos
+ “GraphQL - The Documentary” (https://www.youtube.com/watch?v=783ccP No8)
« “Zero to GraphQL in 30 Minutes” by Steven Luscher (https://www.youtube.com/watch?v=UBGzsb2UkeY)

Research papers & books
+ “Semantics and Complexity of GraphQL” by Hartig and Perez (http://olafhartig.de/files/HartigPerez WWW2018 Preprint.pdf)

* “An Empirical Study of GraphQL Schemas” by Wittern et al.
(http://people.cs.vt.edu/davisjam/downloads/publications/WitternChaDavisBaudartMandel-EmpiricalGraphQL-ICSOC19.pdf, summary at
https://medium.com/swih/empirical-study-graphqgl-icsoc19-29038c48da5)

* "Production ready GraphQL” by Marc-Andre Giroux (from GitHub, @__ xuorig_) (https://book.productionreadygraphgl.com/)

Mai 18th 2020 25

https://graphql.org/
http://spec.graphql.org/
https://principledgraphql.com/
https://github.com/graphql/graphql-js
https://github.com/IBM/openapi-to-graphql
https://www.apollographql.com/client/
https://www.youtube.com/watch%3Fv=783ccP__No8
https://www.youtube.com/watch%3Fv=UBGzsb2UkeY
http://olafhartig.de/files/HartigPerez_WWW2018_Preprint.pdf
http://people.cs.vt.edu/davisjam/downloads/publications/WitternChaDavisBaudartMandel-EmpiricalGraphQL-ICSOC19.pdf
https://medium.com/swlh/empirical-study-graphql-icsoc19-29038c48da5
https://book.productionreadygraphql.com/

Thank you!

