
L1: Web Overview and HTTP
Web Engineering 
188.951 2VU SS20

Jürgen Cito

https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://www.big.tuwien.ac.at/
https://ipa-lab.github.io/


• History of the Internet and Web 

• HTTP: The language of web communication

L1: Web Overview and HTTP



• Describe how clients and web servers interact 

• Request resources from servers and understand their response 

• Describe different URL components 

• Understand and use different HTTP Headers

Learning Goals



1945

article by Vannevar Bush in "Atlantic Monthly": proposal of a 
photo-electrical mechanical device called a Memex (memory 
extension) which could make and follow links between 
documents on microfiche

1965
article by Ted Nelson "A File Structure for the Complex, the 
Changing,  and the Indeterminate"  
first mention of the term "Hypertext"

1968
NLS (oNLine System) by Engelbart 

first implementation of a hypertext system

1969
ARPANET 

the world's first operational packet switching network and 
the progenitor of the Internet

Historical Development



Historical Development

1974
article "A protocol for Packet Network Interconnection" 

introduction of TCP (Transfer Control Protocol)

1978 IP (Internet Protocol)

1984 Domain Name System (DNS)

1989
"Information Management: A Proposal" by T. Berners-Lee 

"hour of birth of the WWW"



Historical Development
1990 First command-line browser

1993 Release of 1st graphical web browser: Mosaic

1994

Internet access by dial-up systems (like CompuServ, AOL) 

Foundation of the W3C 

Netscape Navigator 1.0

1998
Google is founded in Menlo Park, California 

“The PageRank Citation Ranking: Bringing Order to the 
Web” by L Page, S Brin, R Motwani, T Winograd (Stanford)







• Important concepts 
• TCP (Transmission Control Protocol) — connection oriented protocol 

Establishes a point-to-point connection between two entities in the network 

• IP (Internet Protocol) — principal communications protocol on the internet  
Delivers packets of data across network boundaries 

• IP Address — numerical label assigned to devices in a network that use the 
internet protocol to communicate with other devices

What is the internet?

“The internet is the global system of interconnected 
computer networks that uses the Internet protocol suite 
(TCP/IP) to link devices worldwide.” -Wikipedia

128.130.35.76 is one of the public IP addresses for TU Wien



State of the 
“Internet”  
(ARPANET)  
in 1973

Source: https://twitter.com/workergnome/status/807704855276122114

https://twitter.com/workergnome/status/807704855276122114


High Level Web Overview

What happens if we request a website from the internet? 

What are the steps executed in the background required to display a website 



HTTP 
(Hyper Text Transfer 

Protocol)

HTTP Request

HTTP Response

HTTP Request

HTTP Response

High Level Web Overview
Client 

Proxies

Icons by the Noun Project: Cattaleeya Thongsriphong, Flatart, Graphic Tigers, I Putu Kharismayadi 

Multiple layers 
and proxies 

on the internet

www.google.at —> 172.217.23.227

Domain Name 
System (DNS): 

Translating 
hostname to IP 

address

Demo: Try 
traceroute 

www.google.at

Browser

Other Server

Devices

Server

172.217.23.227

- Servers wait for requests 
- They serve web resources



HTTP Overview

HTTP 
(Hyper Text Transfer 

Protocol)

HTTP Request

HTTP Response

Proxies

• Builds upon TCP/IP 

• Synchronous request-response protocol 

• Client (web browser) sends request 

• Web server replies with appropriate answer  
(could also be an error) 

• "Stateless" protocol 

• Each request-response pair is independent  

• No permanent connection between server and browser  
(allows for a high number of users per server) 

• Proxies mediate between browser and server  
(caching, filtering, etc.) 

• In HTTP everything is sent and received as clear text 

• Use HTTPS: HTTP over a secured (TLS) connection



HTTP Resources and URLs

• Standardized way of identification and 
addressing of any resource on the internet 

• Subtype of Uniform Resource Identifier (URI)

Uniform Resource Locator (URL) 

• Abstract concept for nodes in hypertext  
HTML files, documents, images, etc. 

• Data types defined by MIME (RFC 2045) 
"text/html", "image/png", “application/xml“, etc.

Resource 

<scheme>://[<user>[:<password>]@]<server>[:<port>]/[<path>][?<query>][#<fragment>]

URL Syntax



HTTP Resources and URLs - Syntax
<scheme>://[<user>[:<password>]@]<server>[:<port>]/[<path>][?<query>][#<fragment>]

• Protocol to be used when connecting to a server 
http(s), ftp, mongodb, etc.

Scheme 

• Optional: Credentials to access a protected resource
User/Password 

• Domain name or IP address of the server
Server 

• Port at which the server is listening for requests
Port 

• Local path to a resource on the server
Path 

• Parameters that can be passed to server app
Query 

• Name of an entity within the resource. 
This is only used by clients

Fragment 

https://usr:pwd@tennis-club-wieden.at:3000/members/rackets?year=2020#vintage 

https://tiss.tuwien.ac.at/education/
course/courseRegistration.xhtml?

courseNr=188951&semester=2020S



HTTP Request

• Refers to a certain resource (identified by its URL) 
• Contains a certain type (“method”) 

Most common methods for access: GET, POST, PUT 
• Can contain application data (“body”), e.g., the data of a form (POST, PUT) 

• Can contain application metadata, e.g.: 
• Preferred data type and language (for GET, POST) – Content Negotiation 
• Data type of the body (for POST, PUT) 

• Can contain request metadata (headers) 
• Target host, User authentication, Cookies, etc.

Which resource are 
we retrieving

How are we retrieving 
a resource

What data/payload 
are we sending  
to the resource

What data type do 
we want from the 
resource (HTML, 

JSON)
What kind of data are 

we sending



HTTP Request Method

• Each access to a resource has a certain request type ("method") 
• GET: request a resource, only retrieves data 

• POST: submit data to a resource 
• Data is included in body of the request 

• May result in creation of new resource or  
update of existing resource 

• PUT: replaces target resource with sent payload 
• DELETE: delete a resource 
• PATCH: provides a set of instructions to modify the target resource 
• OPTIONS, TRACE, HEAD, CONNECT: access to the metadata of 

the servers, the Internet connection, the resource, etc.

Safe and repeatable 
(expect no side effects)

Expect Side Effects 
for POST, PUT, 

DELETE, PATCH

Idempotent  
(expect same effect even 
with multiple executions)



HTTP Request Headers - Examples

• Accept: what kind of response type to accept 
• Accept: application/json 

• Content-Type: what kind of request payload are we sending 
(in POST and PUT) 

• Accept-Encoding:  tells server a list of acceptable encodings 
• Accept-Encoding: gzip, deflate 

• Authorization: Authorization method and credentials 
• Authorization: Basic QWxhZGRpbjpPcGVuU2VzYW1l 

• Cookie: Sends a cookie to the server (more on that later)

text/plain
text/html
image/jpeg
application/pdf
application/xml

MIME Types



GET /index.html HTTP/1.1 
Accept: text/html,application/xhtml+xml,application/xml, */* 
Accept-Language: de-de 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:10.0.2) Gecko/
20100101 Firefox/10.0.2 
Host: www.tuwien.ac.at 
Connection: keep-alive 

blank line indicates end of the  
header data / begin of the body (this 
request has no body)

method

ap
pl

ic
at

io
n 

m
et

ad
at

a

re
qu

es
t 

m
et

ad
at

a
ap

pl
ic

at
io

n 
da

ta
 

(m
es

sa
ge

 b
od

y)

URL path to requested resource

HTTP  
Request 
Example



HTTP Response

• Always follows a request message 
• Contains a status code  
• Can contain application data („body“)  
• Can contain application metadata, e.g.: 

• Data type and encoding of the application data 

• Caching possibilities and expiring date 

• Current URL of a transferred resource (for GET) 
• Can contain response metadata, e.g.: 

• Server, TCP connection state, date

Code Description Common Example
1xx Informational 101 Switching
2xx Success 200 OK
3xx Redirected 301 Permanent
4xx Client Error 404 Not Found
5xx Server Error 500 Internal Server 

Error

Status



HTTP Response Headers - Examples

• Expires: time/date the response is considered “stale” (used for 
caching) 
• Expires: Wed, 21 Oct 2020 07:30:00 GMT 

• Last-modified: contains the date the resource was modified 

• Content-Type: media type of the resource 
• Content-Type: text/html; charset=UTF-8 

• Set-Cookie:  saves a cookie on the client side (more on that later)



HTTP  
Response 
Example

HTTP/1.1 200 OK 
Date: Mon, 19 Mar 2012 10:00:42 GMT 
Server: Apache 
Keep-Alive: timeout=15, max=100 
Connection: Keep-Alive 
Content-Type: text/html; charset=utf-8 
Content-Encoding: gzip 
Content-Length: 2435 

<!DOCTYPE html> 
<html lang="en"> 
<head> 
  <meta charset="UTF-8"> 
    <title>Web Engineering SS20 - TU Wien</title> 
 … 
</head>  
<body>  
 <header>  
…

end of the header

re
sp

on
se

 m
et

ad
at

a

ap
pl

ic
at

io
n 

m
et

ad
at

a
ap

pl
ic

at
io

n 
da

ta
 

(m
es

sa
ge

 b
od

y)

status



HTTP Live Demos - Summary
• A variety of HTTP requests with curl:


• Retrieving textual data and displaying  
- Response headers in (1), 
- and verbose output (TCP information, request and response headers (2) 
Overall goal here is to show the different content types 
 
(1) curl --head http://people.csail.mit.edu/jcito/we/some_text.json 
(2) curl -v http://people.csail.mit.edu/jcito/we/some_text.txt


• Create a request bin to display - I am replacing the actual URL with $URL here 
(this can be also done in the command line by saying export URL= https://enkuj0njhbzm.x.pipedream.net/) 
 
-v = verbose, -H sets requests headers, -d sets request body, -X sets the request method 

• Show GET: curl -v -X GET  $URL

• Show POST: curl -v -d '{ "name": “Jurgen”, lastname: “Cito” }'   -H "Content-Type: application/json” $URL 

• Show PUT with custom header: curl -X PUT -H “Authorization: Basic XYZ” $URL 

• Go to Chrome and open More Tools -> Developer Tools, select tab “Network” (check “Disable Cache”)

• Go to website of your choosing and see a horde of HTTP requests coming in


http://people.csail.mit.edu/jcito/we/some_text.json
http://people.csail.mit.edu/jcito/we/some_text.txt
https://enkuj0njhbzm.x.pipedream.net/

